Chương 6: Các đại lượng tỉ lệ
Chương 7: Biểu thức đại số
Chương 8: Tam giác
Chương 9. Một số yếu tố xác suất

Giải toán 7 tập 2 trang 72 bài 6: Tính chất ba đường trung trực của tam giác

Giải toán 7 tập 2 trang 72 bài 6: Tính chất ba đường trung trực của tam giác

Giải toán 7 tập 2 trang 72 bài 6 sách Chân trời sáng tạo có đáp án chi tiết cho từng bài tập trong sách giáo khoa Toán lớp 7 Chân trời sáng tạo. Mời các em học sinh cùng quý phụ huynh tham khảo.

Giải toán 7 tập 2 trang 71

Khám phá 1 trang 71 Toán 7 tập 2 CTST

Cho tam giác ABC, em hãy dùng thước kẻ và compa vẽ đường trung trực xy của cạnh BC.

Hướng dẫn giải

Để vẽ đường trung trực xy của cạnh BC ta làm như sau:

Bước 1. Xác định trung điểm của cạnh BC.

Bước 2. Qua trung điểm của cạnh BC, vẽ đường thẳng vuông góc với BC.

Bước 3. Khi đó đường thẳng vừa vẽ là đường thẳng xy.

Ta có hình vẽ sau:

Giải Toán 7 Bài 6: Giải toán 7 tập 2 trang 72

Thực hành 1 trang 71 Toán 7 tập 2 CTST

Cho tam giác nhọn ABC có M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Vẽ ba đường trung trực của tam giác ABC.

Hướng dẫn giải

Qua M vẽ đường thẳng vuông góc với BC.

Qua N vẽ đường thẳng vuông góc với CA.

Qua P vẽ đường thẳng vuông góc với AB.

Khi đó ta thu được ba đường trung trực của tam giác ABC.

Ta có hình vẽ sau:

Cho tam giác nhọn ABC Giải toán 7 tập 2 trang 72

Vận dụng 1 trang 71 Toán 7 tập 2 CTST

Vẽ ba đường trung trực của tam giác ABC vuông tại A.

Hướng dẫn giải

Xác định ba điểm M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.

Qua M vẽ đường thẳng vuông góc với BC.

Qua N vẽ đường thẳng vuông góc với CA.

Qua P vẽ đường thẳng vuông góc với AB.

Khi đó ta thu được ba đường trung trực của tam giác ABC.

Ta có hình vẽ sau:

Giải toán 7 tập 2 trang 72 Tính chất ba đường trung trực của tam giác (ảnh 4)

Khám phá 2 trang 71 Toán 7 tập 2 CTST

Gọi O là giao điểm của hai đường trung trực ứng với cạnh AB, AC của tam giác ABC (Hình 2).

Giải Toán 7 Bài 6: Giải toán 7 tập 2 trang 72

– Hãy so sánh độ dài của ba đoạn thẳng OA, OB, OC.

– Theo em, đường trung trực ứng với cạnh BC có đi qua điểm O không?

Hướng dẫn giải

– Do O nằm trên đường trung trực của AB nên OA = OB.

Do O nằm trên đường trung trực của AC nên OB = OC.

Do đó OA = OB = OC.

– Do OB = OC nên O nằm trên đường trung trực của BC.

Do đó đường trung trực ứng với cạnh BC đi qua điểm O.

Giải toán 7 tập 2 trang 72

Thực hành 2 trang 72 Toán 7 tập 2 CTST

Gọi O là giao điểm của ba đường trung trực của tam giác ABC (Hình 4). Hãy dùng compa vẽ đường tròn tâm O bán kính OA và cho biết đường tròn này có đi qua hai điểm B và C hay không.

Gọi O là giao điểm của ba đường trung trực của tam giác ABC  Giải toán 7 tập 2 trang 72

Hướng dẫn giải

Bước 1. Vẽ tam giác ABC.

Bước 2. Lần lượt chọn trung điểm của các cạnh AB, BC, CA.

Bước 3. Qua trung điểm của cạnh AB, kẻ đường thẳng vuông góc với AB.

Qua trung điểm của cạnh BC, kẻ đường thẳng vuông góc với BC.

Qua trung điểm của cạnh CA, kẻ đường thẳng vuông góc với CA.

Khi đó ta có hình vẽ sau:

Gọi O là giao điểm của ba đường trung trực của tam giác ABC

Ta thấy đường tròn tâm O bán kính OA đi qua hai điểm B và C.

Vận dụng 2 trang 72 Toán 7 tập 2 CTST

Trên bản đồ quy hoạch một khu dân cư có ba điểm dân cư A, B, C (Hình 5). Tìm địa điểm M để xây một trường học sao cho trường học này cách đều ba điểm dân cư đó.

Trên bản đồ quy hoạch một khu dân cư có ba điểm dân cư A, B, C

Hướng dẫn giải

Ba điểm dân cư A, B, C tạo thành ba đỉnh của tam giác ABC.

Do M cách đều ba điểm dân cư nên MA = MB = MC.

Do MA = MB nên M nằm trên đường trung trực của AB.

Do MB = MC nên M nằm trên đường trung trực của BC.

Do đó M là giao điểm ba đường trung trực của tam giác ABC.

Vậy M là giao điểm ba đường trung trực của tam giác ABC với các đỉnh là các điểm dân cư A, B, C.

Giải bài 1 trang 72 Toán 7 tập 2 CTST

Vẽ ba tam giác nhọn, vuông, tù

a) Xác định điểm O cách đều 3 đỉnh của mỗi tam giác.

b) Nêu nhận xét của em về vị trí điểm O trong mỗi trường hợp.

Hướng dẫn giải:

a) Tam giác vuông:

Tam giác vuông

Tam giác nhọn:

Tam giác nhọn

Tam giác tù:

Tam giác tù

b)

  • Trong tam giác vuông: điểm O nằm trên cạnh huyền BC.
  • Trong tam giác nhọn: O nằm trong tam giác ABC.
  • Trong tam giác tù: O nằm ngoài tam giác ABC.

Giải bài 2 trang 72 Toán 7 tập 2 CTST

Cho tam giác nhọn ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA và cho O là điểm cách đều ba đỉnh của tam giác ABC. Chứng minh rằng MO vuông góc với AB, NO vuông góc với BC và PO vuông góc với AC.

Hướng dẫn giải:

Bài 2

Xét ∆ MOB và ∆ MOA có:

MO chung

OB = OA

MB = MA ( M là trung điểm của AB )

=> ∆ MOB = ∆ MOA (c.c.c)

$=> \widehat{OMB} = \widehat{OMA}$

Mà $\widehat{OMB} + \widehat{OMA} = 180°$

$=> 2\widehat{OMB} = 180° => \widehat{OMB} = 90°$

=> OM ⊥ MB hay OM ⊥ AB

Tương tự ta có: ON ⊥ NB hay ON ⊥ BC

=> O là giao điểm của 2 đường trung trực OM và ON

mà P là trung điểm của AC

=> OP là đường trung trực của AC

=> OP ⊥ AC.

Giải bài 3 trang 72 Toán 7 tập 2 CTST

Người ta muốn phục chế lại đĩa cổ hình tròn bị vỡ chỉ còn lại một mảnh (hình 6). Làm thế nào để xác định bán kính bị vỡ của đĩa cổ này?

Bài 2 Giải toán 7 tập 2 trang 72

Hướng dẫn giải:

Bài 3

Lấy 3 điểm A, B, C bất kì thuộc cung tròn.

Xét tam giác ABC

Kẻ 2 đường trung trực của cạnh AB và BC. 2 đường trung trực cắt nhau tại điểm O

=> OA = OB = OC

=> O là tâm đường tròn qua ba điểm A, B, C.

=> OA, OB, OC là bán kính.

Vậy xác định được bán kính của đĩa cổ nãy là OA, OB, OC.