Bài 1. Hệ phương trình bậc nhất ba ẩn Chuyên đề học tập Toán 10

Bài 1. Hệ phương trình bậc nhất ba ẩn Chuyên đề học tập Toán 10

Giải Bài 1 Hệ phương trình bậc nhất ba ẩn Chuyên đề học tập Toán 10. Hướng dẫn giải bài tập theo từng bước, dễ hiểu sách chuyên đề học tập toán 10 Kết nối tri thức

HĐ1 trang 6 Chuyên đề học tập Toán 10

Xét hệ phương trình với các ẩn là x, y, z sau:

\(\left\{ \begin{array}{l}x + y + z = 2\\x + 2y + 3z = 1\\2x + y + 3z = – 1\end{array} \right.\)

a) Mỗi phương trình của hệ trên có bậc mấy đối với các ẩn x, y, z?

b) Thử lại rằng bộ ba số (x; y; z) = (1; 3; -2) thỏa mãn cả ba phương trình của hệ

c) Bằng cách thay trực tiếp vào hệ, hãy kiểm tra xem bộ ba số (1; 1; 2) có thỏa mãn hệ phương trình đã cho không.

Lời giải chi tiết:

a) Mỗi phương trình của hệ trên có bậc một đối với các ẩn x, y, z.

b) Bộ ba số (x; y; z) = (1; 3; -2) thỏa mãn cả ba phương trình của hệ, vì:

\(\begin{array}{l}1 + 3 + ( – 2) = 2\\1 + 2.3 + 3.( – 2) = 1\\2.1 + 3 + 3.( – 2) = – 1\end{array}\)

c) Bộ ba số (x; y; z) = (1; 1; 2) không thỏa mãn hệ phương trình, vì thay vào phương trình đầu của hệ là x + y + z = 1 + 1 + 2 = 4.

Luyện tập 1 trang 7 Chuyên đề học tập Toán 10

Hệ nào dưới đây là hệ phương trình bậc nhất ba ẩn? Kiểm tra xem bộ ba số (-3; 2; -1) có phải là nghiệm của hệ phương trình bậc nhất ba ẩn đó không.

a) \(\left\{ \begin{array}{l}x + 2y – 3z = 1\\2x – 3y + 7z = 15\\3{x^2} – 4y + z = – 3\end{array} \right.\)

b) \(\left\{ \begin{array}{l} – x + y + z = 4\\2x + y – 3z = – 1\\3x\;\;\,\quad – 2z = – 7\end{array} \right.\)

Lời giải chi tiết:

a) Hệ phương trình ở câu a) không phải là hệ phương trình bậc nhất vì phương trình thứ ba chứa \({x^2}\)

b) Hệ phương trình ở câu b) là hệ phương trình bậc nhất ba ẩn.

Thay x = -3; y=2; z=-1 vào các hệ phương trình ta được:

\(\left\{ \begin{array}{l} – ( – 3) + 2 + ( – 1) = 4\\2.( – 3) + 2 – 3.( – 1) = – 1\\3.( – 3)\;\;\,\quad – 2.( – 1) = – 7\end{array} \right.\)

Bộ ba số (-3; 2; -1) nghiệm đúng cả ba phương trình của hệ.

Do đó (-3; 2; -1) là một nghiệm của hệ.

HĐ2 Chuyên đề học tập Toán 10

Cho hệ phương trình \(\left\{ \begin{array}{l}x + y – 2z = 3\\\;\,\quad \;\,y + z = 7\\\quad \,\quad \;\;\,2z = 4\end{array} \right.\)

Từ phương trình cuối hãy tính z, sau đó thay vào phương trình thứ hai để tìm y, cuối cùng thay y và z tìm được vào phương trình đầu để tìm x.

Lời giải chi tiết:

Từ phương trình thứ ba ta có z = 2.

Thay z = 2 vào PT thứ hai ta có: y + 2 = 7 hay y =5.

Với y, z tìm được, thay vào PT thứ nhất ta được x + 5 -2.2 =3 hay x =2.

Vậy nghiệm của hệ đã cho là (x; y; z) = (1; 1; -1).

Luyện tập 2 Chuyên đề học tập Toán 10

Giải hệ phương trình \(\left\{ \begin{array}{l}2x\;\;\quad \,\quad \;\;\, = 3\\\;\,x + \;\;\;y\quad \;\, = 2\\2x – 2y + z = – 1\end{array} \right.\)

Lời giải chi tiết:

Từ phương trình thứ nhất ta có \(x = \frac{3}{2}\).

Thay \(x = \frac{3}{2}\) vào PT thứ hai ta có: \(\frac{3}{2} + y = 2\) hay \(y = \frac{1}{2}\).

Với x, y tìm được, thay vào PT thứ ba ta được \(2.\frac{3}{2} – 2.\frac{1}{2} + z = – 1\) hay \(z = – 3\).

Vậy nghiệm của hệ đã cho là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{3}{2};\frac{1}{2}; – 3} \right).\)

HĐ3 Chuyên đề học tập Toán 10

Cho hệ phương trình \(\left\{ \begin{array}{l}x + y – 2z = 3\\ – x + y + 6z = 13\\2x + y – 9z = – 5\end{array} \right.\)

a) Khử ẩn x của phương trình thứ hai bằng cách cộng phương trình này với phương trình thứ nhất theo từng vế tương ứng. Viết phương trình nhận được (phương trình này không còn chứa ẩn x và là phương trình thứ hai của hệ mới, tương đương với hệ ban đầu).

b) Khử ẩn x của phương trình thứ ba bằng cách nhân phương trình thứ nhất với -2 rồi cộng với phương trình thứ ba theo từng vế tương ứng. Viết phương trình thứba mới nhận được. Từ đó viết hệ mới nhận được sau hai bước trên (đã khử x ở hai phương trình cuối).

c) Làm tương tự đối với hệ mới nhận được ở câu b), từ phương trình thứ hai và thứ ba khử ẩn y ở phương trình thứ ba. Viết hệ dạng tam giác nhận được.

d) Giải hệ dạng tam giác nhận được ở câu c). Từ đó suy ra nghiệm của hệ đã cho.

Lời giải chi tiết:

trình (đã khử ẩn x ở phương trình thứ hai)

\(\left\{ \begin{array}{l}x + y – 2z = 3\\\;\;\;2y + 4z = 16\\2x + y – 9z = – 5\end{array} \right.\)

b) Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y – 2z = 3\\\;\;\;2y + 4z = 16\\\;\;\; – y – 5z = – 11\end{array} \right.\)

c) Nhân hai vế của phương trình thứ hai với \(\frac{1}{2}\) rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử y ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y – 2z = 3\\\;\;\;2y + 4z = 16\\\;\;\;\;\;\;\;\; – 3z = – 3\end{array} \right.\)

d) Từ phương trình thứ ba ta có z =1. Thế vào phương trình thứ hai ta được 2y + 4 = 16 hay y = 6.

Cuối cùng ta có: x + 6 -2.1 = 3 hay x = -1.

Vậy nghiệm của hệ phương trình là (x; y; z) = (-1; 6; 1).

Luyện tập 3 Chuyên đề học tập Toán 10

Giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}2x + y – 3z = 3\\x + y + 3z = 2\\3x – 2y + z = – 1\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + y + 3z = – 3\\2x + y – z = 1\\5x + 2y = 1\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x + 2z = – 2\\2x + y – z = 1\\4x + y + 3z = – 3\end{array} \right.\)

Lời giải chi tiết:

a) Đổi chỗ phương trình thứ nhất và phương trình thứ hai ta được:

\(\left\{ \begin{array}{l}x + y + 3z = 2\\2x + y – 3z = 3\\3x – 2y + z = – 1\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x + y + 3z = 2\\\quad – y – 9z = – 1\\3x – 2y + z = – 1\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -3 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y + 3z\;\;\;\; = 2\\\quad – y – 9z\;\,\; = – 1\\\quad – 5y – 8z = – 7\end{array} \right.\)

Nhân hai vế của phương trình thứ hai với -5 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử y ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y + 3z\;\;\;\; = 2\\\quad – y – 9z\;\,\; = – 1\\\quad \quad \quad 37z = – 2\end{array} \right.\)

Từ phương trình thứ ba ta có \(z = \frac{{ – 2}}{{37}}\).

Thế vào phương trình thứ hai ta được \( – y – 9.\frac{{ – 2}}{{37}} = – 1\) hay \(y = \frac{{55}}{{37}}\)

Cuối cùng ta có: \(x + \frac{{55}}{{37}} + 3.\frac{{ – 2}}{{37}} = 2\) hay \(x = \frac{{25}}{{37}}\).

Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{{25}}{{37}};\frac{{55}}{{37}};\frac{{ – 2}}{{37}}} \right).\)

b) Đổi chỗ ẩn x và ẩn y ta được:

\(\left\{ \begin{array}{l}y + 4x + 3z = – 3\\y + 2x – z = 1\\2y + 5x = 1\end{array} \right.\)

Trừ phương trình thứ hai cho phương trình thứ nhất theo từng vế tương ứng ta được hệ phương trình (đã khử y ở phương trình thứ hai).

\(\left\{ \begin{array}{l}y + 4x + 3z = – 3\\ – 2x – 4z = 4\\2y + 5x = 1\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ ba theo từng vế tương ứng

ta được hệ phương trình (đã khử y ở phương trình cuối).

\(\left\{ \begin{array}{l}y + 4x + 3z = – 3\\ – 2x – 4z = 4\\ – 3x – 6z = 7\end{array} \right.\) hay \(\left\{ \begin{array}{l}y + 4x + 3z = – 3\\x + 2z = – 2\\x + 2z = \frac{{ – 7}}{3}\end{array} \right.\)

Từ hai phương trình cuối, suy ra \( – 2 = – \frac{7}{3}\), điều này vô lí.

Vậy hệ ban đầu vô nghiệm.

Cách 2:

Nhân hai vế của phương trình thứ hai với 3 rồi cộng với phương trình thứ nhất theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình thứ hai).

\(\left\{ \begin{array}{l}4x + y + 3z = – 3\\10x + 4y = 0\\5x + 2y = 1\end{array} \right.\)

Chia hai vế của phương trình thứ hai cho 2 ta được hệ phương trình:

\(\left\{ \begin{array}{l}4x + y + 3z = – 3\\5x + 2y = 0\\5x + 2y = 1\end{array} \right.\)

Từ hai phương trình cuối, suy ra 0 = 1, điều này vô lí.

Vậy hệ ban đầu vô nghiệm.

c)

\(\left\{ \begin{array}{l}x + 2z = – 2\\2x + y – z = 1\\4x + y + 3z = – 3\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x + 2z = – 2\\y – 5z = 5\\4x + y + 3z = – 3\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x + 2z = – 2\\y – 5z = 5\\y – 5z = 5\end{array} \right.\)

Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy, ta được hệ phương trình dạng hình thang

\(\left\{ \begin{array}{l}x + 2z = – 2\\y – 5z = 5\end{array} \right.\)

Rút y theo z từ phương trình thứ hai của hệ ta được: \(y = 5z + 5\)

Rút x theo z từ phương trình thứ nhất của hệ ta được: \(x = – 2z – 2\)

Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là \(S = \{ ( – 2z – 2;5z + 5;z)|z \in \mathbb{R}\} \)

Vận dụng 1 Chuyên đề học tập Toán 10

Hà mua văn phòng phẩm cho nhóm bạn cùng lớp gồm Hà, Lan và Minh hết tổng cộng 820 nghìn đồng. Hà quên không lưu hóa đơn của mỗi bạn, nhưng nhớ được rằng số tiền trả cho Lan ít hơn một nửa số tiền trả cho Hà là 5 nghìn đồng, số tiền trả cho Minh nhiều hơn số tiền trả cho Lan là 210 nghìn đồng. Hỏi mỗi bạn Lan và Minh phải trả cho Hà bao nhiêu tiền?

Lời giải chi tiết:

Gọi số tiền cần trả của mỗi bạn Hà, Lan, Minh lần lượt là x,y,z (đơn vị nghìn đồng)

Vì hết tổng cộng 820 nghìn đồng nên ta có: \(x + y + z = 820\)

Do số tiền trả cho Lan ít hơn một nửa số tiền trả cho Hà là 5 nghìn đồng, nên: \(y = \frac{1}{2}x – 5\) hay \(x – 2y = 10\)

Mà số tiền trả cho Minh nhiều hơn số tiền trả cho Lan là 210 nghìn đồng nên: \(z = y + 210\) hay \( – y + z = 210\)

Từ đó, ta được hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x + y + z = 820\\x – 2y = 10\\ – y + z = 210\end{array} \right.\)

Ta giải hệ bằng phương pháp Gauss.

Trừ phương trình thứ nhất cho phương trình thứ hai theo từng vế tương ứng, ta được hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z = 820\\3y + z = 810\\ – y + z = 210\end{array} \right.\)

Nhân phươn trình thứ ba với 3 rồi cộng với phương trình hai theo từng vế tương ứng, ta được hệ phương trình dạng tam giác:

\(\left\{ \begin{array}{l}x + y + z = 820\\3y + z = 810\\4z = 1440\end{array} \right.\)

Từ phương trình thứ ba ta có z = 360. Thế vào phương trình thứ hai ta được y = 150. Cuối cùng ta có x = 820 – 360 – 150 = 310.

Vậy mỗi bạn Lan và Minh phải trả cho Hà số tiền lần lượt là 150 nghìn đồng, 360 nghìn đồng.

Luyện tập 4 Chuyên đề học tập Toán 10

Sử dụng máy tính cầm tay tìm nghiệm của các hệ phương trình trong Ví dụ 3, Ví dụ 4, Ví dụ 5 và Luyện tập 3.

Lời giải chi tiết:

Ví dụ 3: \(\left\{ \begin{array}{l}x + y + z = 2\\7x + 3y + z = 4\\ – 5x + 7y – 2z = 5\end{array} \right.\)

Nghiệm của hệ phương trình là (x; y; z) = (0; 1; 1)

Ví dụ 4: \(\left\{ \begin{array}{l}2x + y – z = 5\\x + y + z = 3\\5x + 4y + 2z = 10\end{array} \right.\)

Hệ phương trình vô nghiệm

Ví dụ 5: \(\left\{ \begin{array}{l}5x + y – 4z = 2\\x – y – z = – 1\\3x + 3y – 2z = 4\end{array} \right.\)

Hệ có vô số nghiệm

Luyện tập 3

a) \(\left\{ \begin{array}{l}2x + y – 3z = 3\\x + y + 3z = 2\\3x – 2y + z = – 1\end{array} \right.\)

Hệ phương trình có nghiệm \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{{25}}{{37}};\frac{{55}}{{37}};\frac{{ – 2}}{{37}}} \right).\)

b) \(\left\{ \begin{array}{l}4x + y + 3z = – 3\\2x + y – z = 1\\5x + 2y = 1\end{array} \right.\)

Hệ phương trình vô nghiệm

c) \(\left\{ \begin{array}{l}x + 2z = – 2\\2x + y – z = 1\\4x + y + 3z = – 3\end{array} \right.\)

Hệ có vô số nghiệm

Vận dụng 2 Chuyên đề học tập Toán 10

Tại một quốc gia, khoảng 400 loài động vật nằm trong danh sách các loài có nguy cơ tuyệt chủng. Các nhóm động vật có vú, chim và cá chiếm 55% các loài có nguy cơ tuyệt chủng. Nhóm chim chiếm nhiều hơn 0,7% so với nhóm cá, nhóm cá chiếm nhiều hơn 1,5% so với đồng vật có vú. Hỏi mỗi nhóm động vật có vú, chim và cá chiếm bao nhiêu phần trăm trong các loài có nguy cơ tuyệt chủng?

Lời giải chi tiết:

Gọi phần trăm mỗi nhóm động vật có vú, chim, cá lần lượt là x, y, z (%)

Vì các nhóm động vật có vú, chim và cá chiếm 55% các loài có nguy cơ tuyệt chủng nên ta có: \(x + y + z = 55\)

Do nhóm chim chiếm nhiều hơn 0,7% so với nhóm cá, nên: \(y = z + 0,7\) hay \(y – z = 0,7\)

Mà nhóm cá chiếm nhiều hơn 1,5% so với đồng vật có vú nên: \(z = x + 1,5\) hay \( – x + z = 1,5\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x + y + z = 55\\y – z = 0,7\\ – x + z = 1,5\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được:

Nghiệm của hệ phương trình trên là: \((x;y;z) = (17,1;19,3;18,6)\)

Vậy mỗi nhóm động vật có vú, chim và cá lần lượt chiếm 17,1%; 19,3%; 18,6% trong các loài có nguy cơ tuyệt chủng.

Giải bài 1.1 trang 14 Chuyên đề học tập Toán 10

Hệ nào dưới đây là hệ phường trình bậc nhất ba ẩn? Kiểm tra xem bộ ba số (2; 0; -1) có phải là nghiệm của hệ phương trình bậc nhất ba ẩn đó không.

a) \(\left\{ \begin{array}{l}x – 2z = 4\\2x + y – z = 5\\ – 3x + 2y = – 6\end{array} \right.\)

b) \(\left\{ \begin{array}{l}x – 2y + 3z = 7\\2x – {y^2} + z = 2\\x + 2y = – 1\end{array} \right.\)

Lời giải chi tiết

a) Hệ phương trình ở câu a) là hệ phương trình bậc nhất ba ẩn.

Thay x = 2; y=0; z=-1 vào hệ phương trình ta được:

\(\left\{ \begin{array}{l}2 – 2.( – 1) = 4\\2.2 + 0 – ( – 1) = 5\\ – 3.2 + 2.0 = – 6\end{array} \right.\) (đúng)

Bộ ba số (2; 0; -1) nghiệm đúng cả ba phương trình của hệ.

Do đó (2; 0; -1) là một nghiệm của hệ.

b) Hệ phương trình ở câu b) không phải là hệ phương trình bậc nhất vì phương trình thứ hai chứa \({y^2}\)

Giải bài 1.2 trang 14 Chuyên đề học tập Toán 10

Giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}2x – y – z = 20\\x + y = – 5\\x = 10\end{array} \right.\)

b) \(\left\{ \begin{array}{l}x – y – 3z = 20\\x – z = 3\\x + 3z = – 7\end{array} \right.\)

Lời giải chi tiết

a) Từ phương trình thứ ba ta có x = 10.

Thay x = 10 vào PT thứ hai ta có: 10 + y = -5 hay y = -15.

Với x, y tìm được, thay vào PT thứ nhất ta được 2.10 – (-15) -z = 20 hay z=15.

Vậy nghiệm của hệ đã cho là (x; y; z) = (10; -15; 15).

b) Nhân hai vế của phương trình thứ hai với 3 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình thứ ba).

\(\left\{ \begin{array}{l}x – y – 3z = 20\\x – z = 3\\ 3(x-z)+(x+3z)=3.3 +(-7)\end{array} \right.\)\( \Leftrightarrow\left\{ \begin{array}{l}x – y – 3z = 20\\x – z = 3\\4x = 2\end{array} \right.\)

Từ phương trình thứ ba ta có \(x = \frac{1}{2}\).

Thế vào phương trình thứ hai ta được \(\frac{1}{2} – z = 3\) hay \(z = – \frac{5}{2}\)

Cuối cùng ta có: \(\frac{1}{2} – y – 3.\left( { – \frac{5}{2}} \right) = 20\) hay \(y = – 12\).

Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{1}{2}; – 12;\frac{{ – 5}}{2}} \right).\)

Giải bài 1.3 trang 14 Chuyên đề học tập Toán 10

Giải các hệ phương trình sau bằng phương pháp Gauss

a) \(\left\{ \begin{array}{l}2x – y – z = 2\\x + y = 3\\x – y + z = 2\end{array} \right.\)

b) \(\left\{ \begin{array}{l}3x – y – z = 2\\x + 2y + z = 5\\ – x + y = 2\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x – 3y – z = – 6\\2x – y + 2z = 6\\4x – 7y = – 6\end{array} \right.\)

d) \(\left\{ \begin{array}{l}x – 3y – z = – 6\\2x – y + 2z = 6\\4x – 7y = 3\end{array} \right.\)

e) \(\left\{ \begin{array}{l}3x – y – 7z = 2\\4x – y + z = 11\\ – 5x – y – 9z = – 22\end{array} \right.\)

f) \(\left\{ \begin{array}{l}2x – 3y – 4z = – 2\\5x – y – 2z = 3\\7x – 4y – 6z = 1\end{array} \right.\)

Lời giải chi tiết

a) Đổi chỗ phương trình thứ nhất và phương trình thứ hai ta được:

\(\left\{ \begin{array}{l}x + y = 3\\2x – y – z = 2\\x – y + z = 2\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x + y = 3\\ – 3y – z = – 4\\x – y + z = 2\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -1 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y = 3\\ – 3y – z = – 4\\ – 2y + z = – 1\end{array} \right.\)

Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối).

\(\left\{ \begin{array}{l}x + y = 3\\ – 3y – z = – 4\\ – 5y = – 5\end{array} \right.\)

Từ phương trình thứ ba ta có \(y = 1\).

Thế vào phương trình thứ hai ta được \( – 3 – z = – 4\) hay \(z = 1\)

Cuối cùng ta có: \(x + 1 = 3\) hay \(x = 2\).

Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {2;1;1} \right).\)

b) Đổi chỗ phương trình thứ nhất và phương trình thứ ba ta được:

\(\left\{ \begin{array}{l} – x + y = 2\\x + 2y + z = 5\\3x – y – z = 2\end{array} \right.\)

Cộng phương trình thứ nhất với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l} – x + y = 2\\3y + z = 7\\3x – y – z = 2\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với 3 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l} – x + y = 2\\3y + z = 7\\2y – z = 8\end{array} \right.\)

Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối).

\(\left\{ \begin{array}{l} – x + y = 2\\3y + z = 7\\5y = 15\end{array} \right.\)

Từ phương trình thứ ba ta có \(y = 3\).

Thế vào phương trình thứ hai ta được \(9 + z = 7\) hay \(z = – 2\)

Cuối cùng ta có: \( – x + 3 = 2\) hay \(x = 1\).

Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {1;3; – 2} \right).\)

c) Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x – 3y – z = – 6\\5y + 4z = 18\\4x – 7y = – 6\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x – 3y – z = – 6\\5y + 4z = 18\\5y + 4z = 18\end{array} \right.\)

Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy ta được hệ tương đương dạng hình thang

\(\left\{ \begin{array}{l}x – 3y – z = – 6\\5y + 4z = 18\end{array} \right.\)

Rút z theo y từ phương trình hai của hệ ta được: \(z = \frac{{18 – 5y}}{4}\). Thế vào phương trình thứ nhất ta được \(x – 3y – \frac{{18 – 5y}}{4} = – 6 \Leftrightarrow x = \frac{{12y + 18 – 5y}}{4} – 6 = \frac{{7y – 6}}{4}\)

Vậy hệ phương trình đã cho có vô số nghiệm và tập nghiệm của hệ là \(S = \left\{ {\frac{{7y – 6}}{4};y;\frac{{18 – 5y}}{4}} \right\}\)

d) Nhân hai vế của phương trình thứ nhất với -2 rồi cộng với phương trình thứ hai theo từng vế tương

ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x – 3y – z = – 6\\5y + 4z = 18\\4x – 7y = 3\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ ba theo từng vế tương

ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x – 3y – z = – 6\\5y + 4z = 18\\5y + 4z = 27\end{array} \right.\)

Từ hai phương trình cuối, suy ra 18 = 27, điều này vô lí.

Vậy hệ ban đầu vô nghiệm

e)

Trừ phương trình thứ hai cho phương trình thứ nhất theo từng vế tương ứng ta được hệ phương trình

\(\left\{ \begin{array}{l}x + 8z = 9\\4x – y + z = 11\\ – 5x – y – 9z = – 22\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -4 rồi cộng với phương trình thứ hai theo từng vế tương

ứng ta được hệ phương trình (đã khử x ở phương trình thứ hai).

\(\left\{ \begin{array}{l}x + 8z = 9\\ – y – 31z = – 25\\ – 5x – y – 9z = – 22\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với 5 rồi cộng với phương trình thứ ba theo từng vế tương

ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}x + 8z = 9\\ – y – 31z = – 25\\ – y + 31z = 23\end{array} \right.\)

Cộng phương trình thứ hai với phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử z ở phương trình cuối)

\(\left\{ \begin{array}{l}x + 8z = 9\\ – y – 31z = – 25\\ – 2y = – 2\end{array} \right.\)

Từ phương trình thứ ba ta có \(y = 1\).

Thế vào phương trình thứ hai ta được \( – 1 – 31z = – 25\) hay \(z = \frac{{24}}{{31}}\)

Cuối cùng ta có: \(x + 8.\frac{{24}}{{31}} = 9\) hay \(x = \frac{{87}}{{31}}\).

Vậy nghiệm của hệ phương trình là \(\left( {x;{\rm{ }}y;{\rm{ }}z} \right) = \left( {\frac{{87}}{{31}};1;\frac{{24}}{{31}}} \right).\)

f) Cộng phương trình thứ nhất với phương trình thứ hai theo từng vế tương ứng ta được hệ phương trình

\(\left\{ \begin{array}{l}2x – 3y – 4z = – 2\\7x – 4y – 6z = 1\\7x – 4y – 6z = 1\end{array} \right.\)

Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy ta được hệ tương đương

\(\left\{ \begin{array}{l}2x – 3y – 4z = – 2\\7x – 4y – 6z = 1\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với -7 rồi cộng với 2 lần phương trình thứ ba theo từng vế tương ứng ta được hệ phương trình (đã khử x ở phương trình cuối).

\(\left\{ \begin{array}{l}2x – 3y – 4z = – 2\\13y + 16z = 16\end{array} \right.\)

Rút z theo y từ phương trình hai của hệ ta được: \(z = \frac{{16 – 13y}}{{16}}\). Thế vào phương trình thứ nhất ta được

\(2x – 3y – 4.\frac{{16 – 13y}}{{16}} = – 2 \Leftrightarrow 2x = 3y + \frac{{16 – 13y}}{4} – 2 = \frac{{8 – y}}{4}\)

Vậy hệ phương trình đã cho có vô số nghiệm và tập nghiệm của hệ là \(S = \left\{ {\frac{{8 – y}}{4};y;\frac{{16 – 13y}}{{16}}} \right\}\)

Giải bài 1.4 trang 14 Chuyên đề học tập Toán 10

Ba người cùng làm việc cho một công ty với vị trí lần lượt là quản lí kho, quản lí văn phòng và tài xế xe tải. Tổng tiền lương hằng năm của người quản lí kho và người quản lí văn phòng là 164 triệu đồng, còn của người quản lí kho và tài xế xe tải là 156 triệu đồng. Mỗi năm, người quản lí kho lĩnh lương nhiều hơn tài xế xe tải 8 triệu đồng. Hỏi lương hằng năm của mỗi người là bao nhiêu?

Lời giải chi tiết

Gọi tiền lương hằng năm của quản lí kho, quản lí văn phòng và tài xế xe tải là x, y, z (triệu đồng)

Vì tổng tiền lương hằng năm của người quản lí kho và người quản lí văn phòng là 164 triệu đồng, nên \(x + y = 164\)

Của người quản lí kho và tài xế xe tải là 156 triệu đồng, nên ta có \(x + z = 156\)

Mỗi năm, người quản lí kho lĩnh lương nhiều hơn tài xế xe tải 8 triệu đồng nên \(x – z = 8\)

Từ đó ta có hệ pt bậc nhất ba ẩn

\(\left\{ \begin{array}{l}x + y = 164\\x + z = 156\\x – z = 8\end{array} \right.\)

Hệ phương trình trên có nghiệm \((x;y;z) = (82;82;74)\)

Vậy hằng năm, quản lí kho, quản lí văn phòng lĩnh 82 triệu đồng, tài xế xe tải lĩnh 74 triệu đồng.

Giải bài 1.5 trang 14 Chuyên đề học tập Toán 10

Năm ngoái, người ta có thể mua ba mẫu xe ô tô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng. Năm nay, do lạm phát, để mua chiếc xe đó cần 3,018 tỉ đồng. Giá xe ô tô của hãng X tăng 8%, của hãng Y tăng 5% và của hãng Z tăng 12%. Nếu trong năm ngoái giá của chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X thì giá của mỗi chiếc xe trong năm ngoái là bao nhiêu?

Lời giải chi tiết

Gọi giá của mỗi chiếc xe X, Y, Z trong năm ngoái là x, y, z (tỉ đồng)

Năm ngoái, ba mẫu xe ô tô có tổng số tiền là 2,8 tỉ đồng nên \(x + y + z = 2,8\)

Năm nay, để mua chiếc xe đó cần 3,018 tỉ đồng. Giá xe ô tô của hãng X tăng 8%, của hãng Y

tăng 5% và của hãng Z tăng 12%. Do đó: \(1,08x + 1,05y + 1,12z = 3,018\)

Năm ngoái giá của chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X nên ta có \(x = 0,2 + y\)

Từ đó ta có hệ pt bậc nhất ba ẩn

\(\left\{ \begin{array}{l}x + y + z = 2,8\\1,08x + 1,05y + 1,12z = 3,018\\x – y = 0,2\end{array} \right.\)

Hệ phương trình trên có nghiệm \((x;y;z) = (1,2;1;0,6)\)

Vậy năm ngoái giá mỗi chiếc xe của ba hãng X, Y, Z lần lượt là 1,2 tỉ; 1 tỉ và 0,6 tỉ.

Giải bài 1.6 trang 14 Chuyên đề học tập Toán 10

Cho hệ ba phương trình bậc nhất ba ẩn sau:

\(\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1}z = {d_1}\\{a_2}x + {b_2}y + {c_2}z = {d_2}\\{a_3}x + {b_3}y + {c_3}z = {d_3}\end{array} \right.\)

a) Giả sử \(({x_0};{y_0};{z_0})\) và \(({x_1};{y_1};{z_1})\) là hai nghiệm phân biệt của hệ phương trình trên.

Chứng minh rằng \(\left( {\frac{{{x_0} + {x_1}}}{2};\frac{{{y_0} + {y_1}}}{2};\frac{{{z_0} + {z_1}}}{2}} \right)\) cũng là một nghiệm của hệ.

b) Sử dụng kết quả của câu a) chứng minh rằng, nếu hệ phương trình bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.

Lời giải chi tiết

a) Xét phương trình thứ nhất: \({a_1}x + {b_1}y + {c_1}z = {d_1}\)

Ta có \(({x_0};{y_0};{z_0})\) và \(({x_1};{y_1};{z_1})\) là hai nghiệm của hệ phương trình trên. Do đó:

\({a_1}{x_0} + {b_1}{y_0} + {c_1}{z_0} = {d_1}\) và \({a_1}{x_1} + {b_1}{y_1} + {c_1}{z_1} = {d_1}\)

\(\begin{array}{l} \Rightarrow {a_1}{x_0} + {b_1}{y_0} + {c_1}{z_1} + {a_1}{x_1} + {b_1}{y_1} + {c_1}{z_1} = 2{d_1}\\ \Leftrightarrow {a_1}({x_0} + {x_1}) + {b_1}({y_0} + {y_1}) + {c_1}({z_0} + {z_1}) = 2{d_1}\\ \Leftrightarrow {a_1}.\frac{{{x_0} + {x_1}}}{2} + {b_1}.\frac{{{y_0} + {y_1}}}{2} + {c_1}.\frac{{{z_0} + {z_1}}}{2} = {d_1}\end{array}\)

Vậy bộ ba số \(\left( {\frac{{{x_0} + {x_1}}}{2};\frac{{{y_0} + {y_1}}}{2};\frac{{{z_0} + {z_1}}}{2}} \right)\) là nghiệm đúng của pt thứ nhất.

Chứng minh tương tư, ta suy ra bộ ba số này là nghiệm đúng của cả ba phương trình của hệ.

Vậy \(\left( {\frac{{{x_0} + {x_1}}}{2};\frac{{{y_0} + {y_1}}}{2};\frac{{{z_0} + {z_1}}}{2}} \right)\) cũng là một nghiệm của hệ.

b) Ta kí hiệu \(\left( {\frac{{{x_0} + {x_1}}}{2};\frac{{{y_0} + {y_1}}}{2};\frac{{{z_0} + {z_1}}}{2}} \right)\) bởi \(({x_2};{y_2};{z_2})\)

Ta có: \(({x_0};{y_0};{z_0})\) và \(({x_2};{y_2};{z_2})\) là hai nghiệm phân biệt của hệ.

\( \Rightarrow \)Áp dụng câu b, ta có: bộ số \(\left( {\frac{{{x_0} + {x_2}}}{2};\frac{{{y_0} + {y_2}}}{2};\frac{{{z_0} + {z_2}}}{2}} \right)\), kí hiệu\(({x_3};{y_3};{z_3})\)cũng là một nghiệm của hệ.

Tương tự ta có: \(({x_4};{y_4};{z_4}) = \left( {\frac{{{x_0} + {x_3}}}{2};\frac{{{y_0} + {y_3}}}{2};\frac{{{z_0} + {z_3}}}{2}} \right)\)cũng là một nghiệm của hệ.

Cứ như vậy ta tìm được vô số nghiệm \(({x_n};{y_n};{z_n})\)của hệ đã cho.

Vậy nếu hệ PT bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.