Giải Vật lí 10 trang 42 Bài 9: Chuyển động thẳng biến đổi đều sách Kết nối tri thức có đáp án chi tiết cho từng bài tập trong sách giáo khoa vật lí 10 KNTT. Mời các em học sinh cùng quý phụ huynh tham khảo
1. Tính gia tốc của các chuyển động trong hình vẽ ở đầu bài.
2. Các chuyển động trong hình vẽ ở đầu bài có phải là chuyển động thẳng biến đổi đều hay không?
Lời giải:
1.
– Gia tốc của ô tô là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{10}}{1} = 10\left( {m/{s^2}} \right)\)
– Gia tốc của người chạy bộ là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{4 – 6}}{{1 – 0}} = – 2\left( {m/{s^2}} \right)\)
2.
Chuyển động thẳng biến đổi đều là chuyển động thẳng mà vận tốc có độ lớn tăng hoặc giảm đều theo thời gian.
=> Các chuyển động trong hình vẽ ở đầu bài là chuyển động thẳng biến đổi đều.
Câu hỏi trang 41 SGK Vật lí 10
1. Từ các đồ thị trong hình 9.1:

a) Hãy viết công thức về mối liên hệ giữa v với a và t của từng chuyển động ứng với từng đồ thị trong hình 9.1.
b) Chuyển động nào là chuyển động nhanh dần đều, chậm dần đều?
2. Hình 9.2 là đồ thị vận tốc – thời gian trong chuyển động của một bạn đang đi trong siêu thị. Hãy dựa vào đồ thị để mô tả bằng lời chuyển động của bạn đó (khi nào đi đều, đi nhanh lên, đi chậm lại, nghỉ).

Lời giải:
1.
a)
– Đồ thị a: \(v = at\)
– Đồ thị b: \(v = {v_0} + at\)
– Đồ thị c: \(v = {v_0} – at\)
b)
– Chuyển động nhanh dần đều là: đồ thị a và b
– Chuyển động chậm dần đều: đồ thị c
2.
– Trong 4 s đầu tiên: bạn đó đi đều với vận tốc 1,5 m/s.
– Từ giây 4 – giây 6: bạn đó đi chậm lại.
– Từ giây 6 đến giây 7: bạn đó nghỉ
– Từ giây 7 đến giây 8: bạn đó bắt đầu đi theo chiều âm
– Từ giây 8 – 9: bạn đó đi đều với vận tốc -0,5 m/s.
– Từ giây 9 – 10: đi chậm và dừng lại tại giây thứ 10.
1. Hãy tính độ dịch chuyển của chuyển động có đồ thị (v-t) vẽ ở Hình 9.3b. Biết mỗi cạnh của ô vuông nhỏ trên trục tung ứng với 2 m/s, trên trục hoành ứng với 1 s.

2. Chứng tỏ rằng có thể xác định được giá trị của gia tốc dựa trên đồ thị (v – t).
Lời giải:
1.
Độ dịch chuyển có độ lớn bằng diện tích của hình thang vuông có đường cao là t và các đáy có độ lớn v0, v.
Từ đồ thị ta có: \(\left\{ \begin{array}{l}{v_0} = 4\left( {m/s} \right);v = 16\left( {m/s} \right)\\t = 6\left( s \right)\end{array} \right.\)
Suy ra: Độ dịch chuyển là:
\(d = \frac{{\left( {4 + 16} \right).6}}{2} = 60\left( m \right)\)
2.
Ta có: Gia tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)
Từ đồ thị ta thấy: Độ biến thiên vận tốc các khoảng thời gian bằng nhau là 2 m/s.
Xét giữa 2 thời điểm A và B:
=> \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{{v_B} – {v_A}}}{{{t_A} – {t_B}}} = \frac{{12 – 10}}{{4 – 3}} = \frac{2}{1} = 2(m/{s^2})\)
Vậy có thể xác định được giá trị của gia tốc dựa trên đồ thị v – t.
1. Biết độ dịch chuyển trong chuyển động thẳng biến đổi đều có độ lớn bằng diện tích giới hạn đồ thị (v – t) trong thời gian t của chuyển động và các trục tọa độ. Hãy chứng minh rằng công thức tính độ lớn của độ dịch chuyển trong chuyển động thẳng biến đổi đều là:
\(d = {v_0}t + \frac{1}{2}a{t^2}\) (9.4)
2. Từ công thức (9.2) và (9.4) chứng minh rằng:
\({v^2} – v_0^2 = 2.a.d\) (9.5)
Lời giải:
1.
Độ dịch chuyển có độ lớn bằng diện tích của hình thang vuông có đường cao là t và các đáy có độ lớn v0, v.
Diện tích hình thang: \(d = {s_{ht}} = \frac{{(v + {v_0}).t}}{2} = \frac{1}{2}{v_0}t + \frac{1}{2}vt\) (1)
Lại có: \(a = \frac{{v – {v_0}}}{t} \Rightarrow v = at + {v_0}\) (2)
Thay (2) vào (1) ta được:
\(d = \frac{1}{2}{v_0}t + \frac{1}{2}(at + {v_0})t = \frac{1}{2}{v_0}t + \frac{1}{2}a{t^2} + \frac{1}{2}{v_0}t\)
\( \Rightarrow d = {v_0}t + \frac{1}{2}a{t^2}\) (đpcm)
2.
Ta có: \({v_t} = {v_0} + at\) (9.2)
\(d = {v_0}t + \frac{1}{2}a{t^2}\) (9.4)
+ Bình phương 2 vế của (9.2) ta được:
\({v^2} = v_0^2 + 2{v_0}.at + {a^2}{t^2} = v_0^2 + a(2{v_0}t + a{t^2})\) (1)
+ Từ (9.4) ta có:
\(2{\rm{d}} = 2{v_0}t + a{t^2}\) (2)
Thay (2) vào (1) ta được:
\({v^2} = v_0^2 + a.2{\rm{d}} \Leftrightarrow {v^2} – v_0^2 = 2{\rm{a}}.d\) (đpcm)
Câu hỏi 3 trang 42 SGK Vật lí 10
Hãy dùng đồ thị (v – t) vẽ ở hình 9.4 để:
a) Mô tả chuyển động
b) Tính độ dịch chuyển trong 4 giây đầu, 2 giây tiếp theo và 3 giây cuối
c) Tính gia tốc của chuyển động trong 4 giây đầu
d) Tính gia tốc của chuyển động từ giây thứ 4 đến giây thứ 6.
Kiểm tra kết quả của câu b và câu c bằng cách dùng công thức.

Lời giải:
a) Mô tả chuyển động:
– Trong 4 giây đầu tiên: chuyển động chậm dần đều từ 8 m/s đến 0 m/s
– Từ giây thứ 4 đến giây thứ 6: bắt đầu tăng tốc với vận tốc -2 m/s
– Từ giây thứ 6 đến giây thứ 9: chuyển động thẳng đều với vận tốc – 2 m/s
b) Độ dịch chuyển:
– Trong 4 giây đầu:
Độ dịch chuyển bằng diện tích tam giác vuông có cạnh đáy là t và chiều cao là v.
\({d_1} = \frac{1}{2}.{t_1}.{v_1} = \frac{1}{2}.4.8 = 16\left( m \right)\)
– Trong 2 giây tiếp theo:
Độ dịch chuyển bằng diện tích tam giác vuông có cạnh đáy là t và chiều cao là v.
\({d_2} = \frac{1}{2}.{t_2}.{v_2} = \frac{1}{2}.2.( – 4) = – 4\left( m \right)\)
– Trong 3 giây cuối:
Độ dịch cuyển bằng diện tích hình chữ nhật có chiều dài là t và chiều rộng là v.
\({d_3} = {v_3}.{t_3} = – 4.3 = – 12\left( m \right)\)
c)
Gia tốc của chuyển động trong 4 giây đầu:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{0 – 8}}{{4 – 0}} = – 2\left( {m/{s^2}} \right)\)
d)
Gia tốc của chuyển động từ giây thứ 4 đến giây thứ 6:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{ – 4 – 0}}{{6 – 4}} = – 2\left( {m/{s^2}} \right)\)
* Kiểm tra kết quả bằng công thức:
Độ dịch chuyển:
– Trong 4 giây đầu:
\({d_1} = {v_0}.{t_1} + \frac{1}{2}.a.t_1^2 = 8.4 + \frac{1}{2}.( – 2){.4^2} = 16(m)\)
– Trong 2 giây tiếp theo:
\({d_2} = {v_0}{t_2} + \frac{1}{2}a{t_2}^2 = 0.2 + \frac{1}{2}.( – 2){.2^2} = – 4\left( m \right)\)
– Trong 3 giây cuối:
\({d_3} = {v_3}t = – 4.3 = – 12\left( m \right)\)
=> Trùng với kết quả khi dùng đồ thị.
Đồ thị vận tốc – thời gian ở Hình 9.5 mô tả chuyển động của một chú chó con đang chạy trong ngõ thẳng và hẹp.
a) Hãy mô tả chuyển động của chú chó.
b) Tính quãng đường đi được và độ dịch chuyển của chú chó sau 2s; 4s; 7s và 10s bằng đồ thị và bằng công thức.

Lời giải
a) Mô tả chuyển động:
– Từ giây thứ 0 đến giây thứ 2: chuyển động thẳng đều với vận tốc 1 m/s.
– Từ giây thứ 2 đến giây thứ 4: chuyển động thẳng nhanh dần đều từ 1 m/s đến 3 m/s.
– Từ giây thứ 4 đến giây thứ 7: chuyển động chậm dần đều từ 3 m/s về 0 m/s.
– Từ giây thứ 7 đến giây thứ 8: đứng yên.
– Từ giây thứ 8 đến giây thứ 9: chuyển động thẳng nhanh dần đều theo chiều ngược lại (theo chiều âm).
– Từ giây thứ 9 đến giây thứ 10: chuyển động thẳng đều theo chiều âm.
b) Tính quãng đường và độ dịch chuyển bằng đồ thị
– Sau 2 giây:
+ Quãng đường: s1 = 1.2 = 2m
+ Độ dịch chuyển: d1 = 1.2 = 2m
– Sau 4 giây:
+ Quãng đường: s2 = s1 + \(\frac12\).(1 + 3).2 = 6m
+ Độ dịch chuyển: d2 = d1 + \(\frac12\).(1 + 3).2 = 6m
– Sau 7 giây:
+ Quãng đường: s3 = s2 + \(\frac12\).3.3 = 10,5m
+ Độ dịch chuyển: d3 = d2 + \(\frac12\).3.3 = 10,5m
– Sau 10 giây:
+ Từ giây thứ 7 đến giây thứ 8 vật đứng yên nên quãng đường bằng 0.
+ Quãng đường: s4 = s3 + \(\frac12\).1.1 + 1.1 = 12m
+ Độ dịch chuyển: d4 = d3 + \(\frac12\).(-1).1 + (-1).1 = 9m
Tính quãng đường và độ dịch chuyển bằng công thức:

– Sau 2 giây:
+ Độ dịch chuyển: d1 = v0t1 = 1.2 = 2m
+ Vật chuyển động thẳng không đổi chiều nên quãng đường bằng độ dịch chuyển: s1 = d1 = 2m
– Sau 4 giây:
+ Gia tốc tính từ giây thứ 2 đến giây thứ 4: \(a_1\;=\;\frac{v_2\;-\;v_1}{4\;-\;2}\;=\;\frac{3-1}{4-2}\;=\;1\;m/s^2\)
+ Độ dịch chuyển:
\(d_2\;=\;d_1\;+\;v_1\;t_2\;+\;\frac12\;a_1\;t_2^2\;=\;2\;+\;1\;.\;2\;+\;\frac12\;.\;1\;.\;2^2\;=\;6\;m\)
+ Vật chuyển động thẳng không đổi chiều nên quãng đường bằng độ dịch chuyển: s2 = d2 = 6m
– Sau 7 giây:
+ Gia tốc tính từ giây thứ 4 đến giây thứ 7: \(a_2\;=\;\frac{v_3\;-\;v_2}{7\;-\;4}\;=\;\frac{0\;-\;3}{7\;-\;4}\;=\;-1\;m/s^2\)
+ Độ dịch chuyển: \(d_3\;=\;d_2\;+\;v_2\;t_3\;+\;\frac12\;a_2\;t_3^2\;=\;6\;+\;3\;.\;3\;+\;\frac12\;.\;(-1)\;.\;3^2\;=\;10,5\;m\)
+ Vật chuyển động thẳng không đổi chiều nên quãng đường bằng độ dịch chuyển: s3 = d3 = 10,5m
– Sau 10 giây:
+ Từ giây thứ 7 đến giây thứ 8 vật đứng yên nên quãng đường bằng 0.
+ Từ giây thứ 8 đến giây thứ 9 vật chuyển động theo chiều âm
+ Gia tốc tính từ giây thứ 8 đến giây thứ 9: \(a_3\;=\;\frac{v_5\;-\;v_4}{9\;-\;8}\;=\;\frac{-\;1\;-\;0}{9\;-\;8}\;=\;-1\;m/s^2\)
+ Độ dịch chuyển từ giây thứ 8 đến giây thứ 9: \(d_4\;=\;v_4\;t_5\;+\;\frac12\;a_3\;t_5^2\;=\;0\;.\;1\;+\;\frac12\;.\;(-1)\;.\;1^2\;=\;-\;0,5\;m\)
+ Quãng đường vật đi được từ giây thứ 8 đến giây thứ 9 là: s’ = 0,5m
+ Từ giây thứ 9 đến giây thứ 10 vật chuyển động thẳng đều nên gia tốc bằng 0
+ Độ dịch chuyển từ giây thứ 9 đến giây thứ 10: d5 = v5t6 = (-1) . 1 = -1m
+ Quãng đường vật đi được từ giây thứ 9 đến giây thứ 10 là: s” = 1m
+ Độ dịch chuyển sau 10 giây: d = d3 + d4 + d5 = 10,5 – 0,5 – 1 = 9m
+ Quãng đường sau 10 giây: s = s3 + s4 + s5 = 10,5 + 0,5 + 1 = 12m
Một vận động viên đua xe đạp đường dài vượt qua vạch đích với tốc độ 10 m/s. Sau đó vận động viên này đi chậm dần đều thêm 20 m mới dừng lại. Coi chuyển động của vận động viên là thẳng.
a) Tính gia tốc của vận động viên trong đoạn đường sau khi qua vạch đích.
b) Tính thời gian vận động viên đó cần để dừng lại kể từ khi cán đích.
c) Tính vận tốc trung bình của người đó trên quãng đường dừng xe.
a)
Áp dụng công thức: \(v^2\;-\;v_0^2\;=\;2ad\)
Gia tốc của vận động viên trong đoạn đường sau khi qua vạch đích (khi dừng lại v = 0) là
\(a\;=\;\frac{v^2\;-\;v_0^2}{2d}\;=\;\frac{0^2\;-\;10^2}{2\;.\;20}\;=\;-\;2,5\;m/s^2\)
b) Thời gian vận động viên cần để dựng lại kể từ khi cán đích là:
\(t\;=\;\frac{v\;-\;v_0}a\;=\;\frac{0\;-\;10}{-\;2,5}\;=\;4s\)
c) Vận tốc trung bình của người đó trên quãng đường dừng xe là:
\(v_{tb}\;=\;\frac{v\;+\;v_0}2\;=\;\frac{0\;+\;10}2\;=\;5\;m/s\)
Hoặc có thể áp dụng công thức: \(v_{tb}\hspace{0.278em}=\;\frac dt\;=\;\frac{20}4\;=\;5\;m/s\hspace{0.278em}\)