Giải Toán lớp 6 Cánh diều trang 47 bài 12 có đáp án chi tiết cho từng bài tập trong sách giáo khoa toán 6 Cánh diều tập 1. Mời các em học sinh cùng quý phụ huynh tham khảo.
Thầy giáo chuẩn bị 30 miếng dứa và 48 miếng dưa hấu để liên hoan lớp. Thầy giáo muốn chia số trái cây trên vào một số đĩa sao cho mỗi đĩa có số miếng mỗi loại quả như nhau.
Thầy giáo có thể chia như thế vào bao nhiêu đĩa? Số đĩa nhiều nhất mà thầy giáo có thể dùng là bao nhiêu?
Hướng dẫn:
Trước khi học bài này, ta giải quyết bài toán như sau:
+) Ta tìm các ước của 30 và 48:
Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.
Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
+) Các ước chung của của 30 và 48 là 1, 2, 3, 6
Vậy thầy giáo có thể chia số hoa quả thành 1 đĩa, 2 đĩa, 3 đĩa hoặc 6 đĩa. Số đĩa nhiều nhất mà thầy giáo có thể chia là 6 đĩa.
I. Ước chung và Ước chung lớn nhất
a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần:
b) Tìm các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai.
c) Xác định số lớn nhất trong các ước chung của 30 và 48.
Hướng dẫn:
a) Các ước của 30 và của 48 theo thứ tự tăng dần:
Các ước của 30 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 | ||
Các ước của 48 | 1 | 2 | 3 | 4 | 6 | 8 | 12 | 16 | 24 | 48 |
b) Các số vừa ở hàng thứ nhất vừa ở hàng thứ 2 là: 1;2;3;6.
c) Số lớn nhất là 6.
a) Số 8 có phải là ước chung của 24 và 56 không? Vì sao?
b) Số 8 có phải là ước chung của 14 và 48 không? Vì sao?
Hướng dẫn:
a) Số 8 là ước chung của 24 và 56 vì 8 vừa là ước chung của 24 vừa là ước chung của 56.
b) Số 8 không phải là ước chung của 14 và 48 vì 8 là ước chung của 48 nhưng không phải là ước chung của 14.
Số 7 có phải là ước chung của 14, 49, 63? Vì sao?
Hướng dẫn:
Số 7 là ước chung của 14, 49, 63 vì 7 vừa là ước chung của 14 vừa là ước chung của 49 vừa là ước chung của 63.
Quan sát bảng sau:
a) Viết tập hợp ƯC(24, 36).
b) Tìm ƯCLN (24, 36).
c) Thực hiện phép chia ƯCLN (24, 36) cho các ước chung của hai số đó.
Hướng dẫn:
a) Quan sát bảng trên ta thấy các số 1; 2; 3; 4; 6; 12 vừa là ước của 24 vừa là ước là ước của 36 nên các số đó là ước chung của 24 và 36.
Do đó ta viết: ƯC(24, 36) = {1; 2; 3; 4; 6; 12}.
b) Trong các ước chung của 24 và 36, ta thấy 12 là số lớn nhất.
Vậy ƯCLN(24, 36) = 12.
c) Thực hiện phép chia ƯCLN(24, 36) cho các ước chung của hai số đó ta được:
12 : 1 = 12
12 : 2 = 6
12 : 3 = 4
12 : 4 = 3
12 : 6 = 2
12 : 12 = 1.
Tìm tất cả các chữ số có hai chữ số là ước chung của a và b, biết rằng UCLN (a,b) = 80
Hướng dẫn:
Vì ước chung của a và b đều là ƯCLN(a, b) = 80 nên tất cả các số có hai chữ số là ước chung của a và b là: 10, 16, 20, 40, 80.
II. Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố
Tìm ƯCLN của 126 và 162
Hướng dẫn:
126 = 2.7.32
162 = 23.33
=> ƯCLN{126;162} = 2. 32 = 18
III. Hai số nguyên tố cùng nhau
Tìm ƯCLN(8, 27).
Hướng dẫn:
Ta có: 8 = 2 . 4 = 2 . 2. 2 = 23
27 = 3 . 9 = 3 . 3. 3 = 33
Ta thấy hai số 8 và 27 không có thừa số nguyên tố chung do đó ƯCLN của chúng bằng 1.
Vậy ƯCLN(8, 27) = 1.
a) Tìm ƯCLN(4,9).
b) Có thể rút gọn phân số 4/9 được nữa không?
Hướng dẫn:
a) ƯCLN(4,9) = 1 vì 4 và 9 chỉ có đúng một ước chung là số 1.
b) Không thể rút gọn phân số 4/9 được nữa vì 4 và 9 không chia hết cho số nào ngoài số 1.
Hai số 24 và 35 có nguyên tố cũng nhau không? Vì sao?
Hướng dẫn:
Hai số 24 và 35 là hai số nguyên tố cùng nhau vì ƯCLN(24,35) = 1
IV. Giải Toán lớp 6 Cánh diều phần Bài tập
Số 1 có phải là ước chung của hai số tự nhiên bất kì không? Vì sao?
Hướng dẫn:
Số 1 là ước chung của hai số tự nhiên bất kì. Bởi vì tất cả các số tự nhiên đều có ước số là số 1.
Quan sát hai thanh sau:
a) Viết tập hợp ƯC(440,495)
b) Tìm ƯCLN(440,495)
Hướng dẫn:
a) ƯC(440,495) = {1,5,11,55}
b) ƯCLN(440,495) = 55
Tìm ước chung lớn nhất của từng cặp số trong 3 số sau đây:
a) 31, 22,34
b) 105, 128, 135
Hướng dẫn:
a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31.
22 và 34 không chia hết cho 31
Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.
+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17.
Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.
Vậy ƯCLN( 22, 34) = 2.
b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có:
Do đó: 105 = 3 . 5 . 7
128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27
135 = 3 . 3 . 3 . 5 = 33 . 5
+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1.
+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1.
+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5.
Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1.
Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15
Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15.
Tìm ƯCLN(126, 150). Từ đó hãy tìm tất cả các ước chung của 126, 150
Hướng dẫn:
Phân tích:
126 = 2.32.7
150 = 2.3.52
=> ƯCLN(126, 150) = 2.3 = 6
ƯC(126, 150) = {1,2,3,6}.
Rút gọn các phân số sau về phân số tối giản $\frac{60}{72}$;$\frac{70}{95}$; $\frac{150}{360}$
Hướng dẫn:
$\frac{60}{72}$= $\frac{5}{6}$
$\frac{70}{95}$=$\frac{14}{19}$
$\frac{150}{360}$=$\frac{5}{12}$
Phân số $\frac{4}{9}$bằng các phân số nào trong các phân số sau: $\frac{48}{108}$;$\frac{80}{180}$
Hướng dẫn:
Phân số $\frac{4}{9}$ bằng các phân số $\frac{48}{108}$; $\frac{80}{180}$
Một nhóm gồm 24 bạn nữ và 30 bạn nam tham gia một số trò chơi. Có thể chia các bạn thành nhiều nhất bao nhiêu đội chơi sao cho số bạn nam cũng như số bạn nữ được chia đều vào các đội?
Hướng dẫn:
Gọi a là số đội được chia
Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30.
Ta có: 24 = 3 . 8 = 3 . 23; 30 = 3 . 10 = 3 . 2 . 5
(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)
Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6.
Vậy có thể chia các bạn nhiều nhất thành 6 đội.
Một khu đất có dạng hình chữ nhật với chiều dài 48m, chiều rộng 42m. Người ta muốn chia khu đất ấy thành những mảnh hình vuông bằng nhau (với độ dài cạnh, đo theo đơn vị mét là số tự nhiên) để trồng các loại rau. Có thể chia được bằng bao nhiêu cách? Với cách chia nào thì diện tích của mảnh đất hình vuông là lớn nhất và bằng bao nhiêu?
Hướng dẫn:
Gọi: a là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau
b (m) là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất a,b ∈
Theo yêu cầu bài ra thì khi đó:
+ a là số các ước chung của 48 và 42
+ b là ước chung lớn nhất của 48 và 42
Ta có: 42 = 2 . 21 = 2 . 3 . 7
48 = 16 . 3 = 24 . 3
Do đó: ƯCLN(42, 48) = 2 . 3 = 6 hay b = 6 m
Mà Ư(6) = {1; 2; 3; 6) Nên ƯC(42, 48) = {1; 2; 3; 6}
Do đó có 4 ước chung của 42 và 48 hay a = 4.
Vậy:
+ Số cách chia thành những mảnh hình vuông bằng nhau là 4 cách.
+ Với cách chia có độ dài cạnh là 6m thì cạnh của mảnh đất hình vuông là lớn nhất.