Toán lớp 10 tập 2 trang 82 Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Toán lớp 10 tập 2 trang 82 Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Giải  toán lớp 10 tập 2 trang 82 bài 26 có đáp án chi tiết cho từng bài tập trong sách giáo khoa toán lớp 10 tập 2 Kết nối tri thức. Mời các em học sinh cùng quý phụ huynh tham khảo.

Toán lớp 10 tập 2 trang 82

Bài 9.1 trang 82 Toán lớp 10 tập 2 Kết nối tri thức

Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30.

a. Mô tả không gian mẫu.

b. Gọi A là biến cố: “Số được chọn là số nguyên tố”. Các biến cố A và $\overline{A}$

là tập con nào của không gian mẫu?

Hướng dẫn:

a. Không gian mẫu Ω = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23 ;24; 25; 26 ; 27; 28; 29; 30}.

b. A = {2; 3; 5; 7; 11; 13; 17; 19; 23; 29}

$\overline{A}$= {1; 4; 6; 8; 9; 10; 12; 14; 15; 16; 18; 20; 21; 22; 24; 25; 26; 27; 28; 30}.

Bài 9.2 trang 82 Toán lớp 10 tập 2 Kết nối tri thức

Chọn ngẫu nhiên một số nguyên dương không lớn hơn 22 .

a. Mô tả không gian mẫu.

b. Gọi B là biến cố: “Số được chọn chia hết cho 3 “. Các biến cố B và $\overline{B}$

là các tập con nào của không gian mẫu?

Hướng dẫn:

a. Không gian mẫu $\Omega$ = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22}.

b. B = {3; 6; 9; 12; 15; 18; 21}

\overline{B}$ = {1; 2; 4; 5; 7; 8; 10; 11; 13; 14; 16; 17; 19; 20; 22}.

Bài 9.3 trang 82 Toán 10 tập 2 Kết nối tri thức

Gieo đồng thời một con xúc xắc và một đồng xu.

a. Mô tả không gian mẫu.

b. Xét các biến cố sau:

C: “Đồng xu xuất hiện mặt sấp”;

D: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc là 5”.

Các biến cố C, $\overline{C}$ , D và $\overline{D}$

là các tập con nào của không gian mẫu?

Hướng dẫn:

a. Kí hiệu S là mặt sấp, N là mặt ngửa. Không gian mẫu được cho theo bảng:

123456
SS1S2S3S4S5S6
NN1N2N3N4N5N6

Vậy $n(\Omega )$ = 10.

b.

C = {S1; S2; S3; S4; S5; S6}

$\overline{C}$ = {N1; N2; N3; N4; N5; N6}

D = {N1; N2; N3; N4; N5; N6; S5}

$\overline{D}$ = {S1; S2; S3; S4; S6}

Bài 9.4 trang 82 Toán 10 tập 2 Kết nối tri thức

Một túi có chứa một số bi xanh, bi đỏ, bi đen và bi trắng. Lấy ngẫu nhiên một viên bi từ trong túi.

a. Gọi H là biến cố: “Bi lấy ra có màu đỏ”. Biến cố: “Bi lấy ra có màu xanh hoặc màu đen hoặc trắng” có phải là biến cố \overline{H}

hay không?

b. Gọi K là biến cố: “Bi lấy ra có màu xanh hoặc màu trắng”. Biến cố: “Bi lấy ra màu đen” có phải là biến cố \overline{K}

hay không?

Hướng dẫn:

a. Biến cố: “Bi lấy ra có màu xanh hoặc màu đen hoặc trắng” có là biến cố \overline{H}

vì nếu không lấy ra bi màu đỏ thì chỉ có thể là màu xanh hoặc đen, hoặc trắng.

b. Biến cố: “Bi lấy ra màu đen” không là biến cố $\overline{K}$

vì nếu không lấy ra màu xanh hoặc màu trắng thì có thể là màu đen hoặc đỏ.

Bài 9.5 trang 82 Toán 10 tập 2 Kết nối tri thức

Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:

a. Số chấm xuất hiện trên hai con xúc xắc bé hơn 3 ;

b. Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5 ;

c. Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;

d. Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.

Do gieo một con xúc xắc thì số chấm xuất hiện có thể là 1, 2, 3, 4, 5, 6 nên khi gieo 2 con xúc xắc thì số khả năng xảy ra là $n(\Omega )$ = 6.6 = 36.

Các kết quả của không gian mẫu được cho trong bảng:

123456
1(1;1)(1;2)(1;3)(1;4)(1;5)(1;6)
2(2;1)(2;2)(2;3)(2;4)(2;5)(2;6)
3(3;1)(3;2)(3;3)(3;4)(3;5)(3;6)
4(4;1)(4;2)(4;3)(4;4)(4;5)(4;6)
5(5;1)(5;2)(5;3)(5;4)(5;5)(5;6
6(6;1)(6;2)(6;3)(6;4)(6;5)(6;6)

Hướng dẫn:

a. Biến cố A: “Số chấm xuất hiện trên hai con xúc xắc bé hơn 3”.

Các kết quả thuận lợi của A là: (1;1), (1;2), (2;1), (2;2).

n(A) = 4. Vậy P(A)=$\frac{n(A)}{n(\Omega )}=\frac{4}{36}=\frac{1}{9}.$

b. Biến cố B: “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5”.

Các kết quả thuận lợi của B là:

(5;1), (5;2), (5;3), (5;4), (5;5), (5;6), (6;1), (6;2), (6;3), (6;4), (6;5), (6;6).

n(B) = 12. VậyP(B)=$\frac{n(B)}{n(\Omega )}=\frac{12}{36}=\frac{1}{3}.$

c. Biến cố C: “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6”.

Các kết quả thuận lợi của C là: (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (3; 1), (4; 1), (5; 1).

n(C) = 9. Vậy P(C)=$\frac{n(C)}{n(\Omega )}=\frac{9}{36}=\frac{1}{4}.$

d. Biến cố D: “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố”.

Các kết quả thuận lợi của D là: (1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6;1), (2; 3); (2; 5), (3; 2), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5).

n(D) = 15. Vậy P(D)=$\frac{n(D)}{n(\Omega )}=\frac{15}{36}=\frac{5}{12}.$