Toán 10 tập 2 trang 80 Bài 1: Không gian mẫu và biến cố

Toán 10 tập 2 trang 80 Bài 1: Không gian mẫu và biến cố

Giải toán 10 tập 2 trang 80 bài 1 sách Chân trời sáng tạo có đáp án chi tiết cho từng bài tập trong sách giáo khoa Toán 10 tập 2 Chân trời sáng tạo. Mời các em học sinh cùng quý phụ huynh tham khảo.

Toán 10 tập 2 trang 80

Bài 1 trang 80 Toán 10 tập 2

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 100.

a. Hãy mô tả không gian mẫu.

b. Gọi A là biến cố “Số được chọn là số chính phương”. Hãy viết tập hợp mô tả biến cố A.

c. Gọi B là biến cố “Số được chọn chia hết cho 4.” Hãy tính số các kết quả thuận lợi cho B.

Hướng dẫn:

a. Ω = {1; 2; 3; 4; 5; 6;…; 98; 99}

b. A = {1; 4; 9; 16; 25; 36; 49; 64; 81}

c. B = {4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48; 52; 56; 60; 64; 68; 72; 76; 80; 84; 88; 92; 96}

Vậy có 24 kết quả thuận lợi cho B.

Bài 2 trang 80 Toán 10 tập 2

Trong hộp có 3 tấm thẻ được đánh số từ 1 đến 3. Hãy xác định không gian mẫu của các phép thử:

a. Lấy 1 thẻ từ hộp, xem số, trả thẻ vào hộp rồi lấy lại tiếp 1 thẻ từ hộp;

b. Lấy 1 thẻ từ hợp, xem số, bỏ ra ngoài rồi lại lấy tiếp 1 thẻ từ hộp;

c. Lấy đồng thời hai thẻ từ hộp.

Hướng dẫn:

a. Do hai tấm thẻ được lấy lần lượt nên cần tính đến thứ tự lấy thẻ. Khi đó, không gian mẫu của phép thử là:

Ω = {(1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (2; 3), (3; 1), (3; 2), (3; 3)}

b. Do hai tấm thẻ được lấy lần lượt nên cần tính đến thứ tự lấy thẻ. Khi đó, không gian mẫu của phép thử là:

Ω = {(1; 2), (1; 3), (2; 1), (2; 3), (3; 1), (3; 2)}

c. Do mỗi lần lấy thẻ không tính đến thứ tự lần lượt nên không gian mẫu của phép thử là:

Ω = {(1; 2), (1; 3), (2; 3)}

Bài 3 trang 80 Toán 10 tập 2

Gieo hai con xúc xắc. Hãy tính số các kết quả thuận lợi cho biến cố:

a. “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”;

b. “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”;

c. “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”

Hướng dẫn:

a. Gọi A là biến cố ” Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”.

Ta có: A = {(1; 4), (2; 5), (3; 6), (4; 1), (5; 2), (6; 3)}

Vậy có 6 kết quả thuận lợi cho biến cố A.

b. Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5 nghĩa là các cặp (i; j) thỏa mãn ij chia hết cho 5.

Khi đó các cặp số (i; j) thỏa mãn điều kiện trên là: (1; 5); (2; 5); (3; 5); (4; 5); (5; 5); (6; 5); (5; 1); (5; 2); (5; 3); (5; 4); (5; 6).

Vậy có 11 kết quả thuận lợi cho biến cố đã cho.

c. Gọi C là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”:

Ta có: C = {(1; 2), (1; 4), (1; 6), (2; 1), (2; 3), (2; 5), (3; 2), (3; 4), (3; 6), (4; 1), (4; 3), (4; 5), (5; 2), (5; 4), (5; 6), (6; 1), (6; 3), (6; 5)}

Vậy có 18 kết quả thuận lợi cho biến cố C.

Bài 4 trang 80 Toán 10 tập 2

Xếp 4 viên bi xanh và 5 viên bi trắng có các kích thước khác nhau thành một hàng ngang một cách ngẫu nhiên. Hãy tính số các kết quả thuận lợi cho các biến cố:

a.”Không có hai viên bi trắng nào xếp liền nhau”;

b. “Bốn viên bi xanh được xếp liền nhau”.

Hướng dẫn:

a. Xếp 4 viên bi xanh tạo thành một hàng ngang, có 4! cách.

4 viên bi xanh sẽ tạo ra 5 khoảng trống, xếp 5 viên bi trắng vào 5 khoảng trống này. Khi đó, số cách xếp 5 viên bi trắng là 5! cách.

Vậy số kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau” là: 4!. 5! = 2880.

b. Coi 4 viên bi xanh là một nhóm thì có 4! cách xếp.

Xếp nhóm 4 viên bi xanh này với 5 viên bi trắng thì có 6! cách xếp.

Vậy số kết quả thuận lợi cho biến cố “Bốn viên bi xanh được xếp liền nhau” là: 4!. 6! = 17 280.