Giải bài tài tập Toán lớp 6 bài 12 có đáp án chi tiết cho từng bài tập trong sách bài tập Kết nối tri thức mới. Mời các em học sinh cùng quý phụ huynh tham khảo.
Hãy tìm các tập B(8), B(12) và BC(8, 12).
Hướng dẫn:
+) Nhân lần lượt 8 với các số 0; 1; 2; 3; 4; 5; 6; 7;… ta được: 0; 8; 16; 24; 32; 40; 48; 56; 64; 72;…
Do đó: B(8) = { 0; 8; 16; 24; 32; 40; 48; 56; 64; 72;…}
+) Nhân lần lượt 12 với các số 0; 1; 2; 3; 4; 5; … ta được 0; 12; 24; 36; 48; 60; 72; …
Do đó B(12) = {0; 12; 24; 36; 48; 60; 72; …}
BC(8, 12) = {0; 24; 48; 72; …}
Điền các từ thích hợp vào chỗ chấm:
a) Nếu 20 ⁝ a và 20 ⁝ b thì 20 là …….. của a và b;
b) Nếu 30 là số tự nhiên nhỏ nhất mà 30 ⁝ a và 30 ⁝b thì 30 là ……… của a và b.
Hướng dẫn:
a) Nếu 20 ⁝ a và 20 ⁝ b thì 20 là bội chung của a và b;
b) Nếu 30 là số tự nhiên nhỏ nhất mà 30 ⁝ a và 30 ⁝ b thì 30 là bội chung nhỏ nhất của a và b.
Tìm BCNN của hai số m, n biết:
a) m = 2.33.72; n = 32.5.112
b) m = 24.3.55; n = 23.32.72
Hướng dẫn:
a) Ta có: m = 2.33.72; n = 32.5.112
+) Thừa số nguyên tố chung là 3 và riêng là 2; 5; 7; 11.
+) Số mũ lớn nhất của 3 là 3, số mũ lớn nhất của 2 là 1, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 7 là 2, số mũ lớn nhất của 11 là 2
Khi đó BCNN(m, n) = 2.33.5.72.112 = 1 600 830.
b) Ta có: m = 24.3.55; n = 23.32.72
+) Thừa số nguyên tố chung là 2 và 3 và riêng là 5; 7
+) Số mũ lớn nhất của 2 là 4, số mũ lớn nhất của 3 là 2, số mũ lớn nhất của 5 là 5, số mũ lớn nhất của 7 là 2
Khi đó BCNN(m, n) = 24.3.55. 72 = 22 050 000.
Hãy tìm BCNN(105, 140) rồi tìm BC(105, 140)
Hướng dẫn:
+) Phân tích 105 và 140 ra thừa số nguyên tố:
105 = 3.5.7; 140 = 22.5.7
+) Thừa số nguyên tố chung là 5 và riêng là 2; 3 và 7
+) Số mũ lớn nhất của 2 là 2, số mũ lớn nhất của 3 là 1, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 7 là 1
Khi đó BCNN(105, 140) = 22.3.5.7 = 420
BC(105, 140) = B(420) = {0; 420; 840; …}
Vậy BCNN(105, 140) = 420 và BC(105, 140) = B(420) = {0; 420; 840; …}
Tìm BCNN của các số sau:
a) 31 và 93;
b) 24; 60 và 120.
Hướng dẫn:
a) Vì 93 ⁝ 31 nên BCNN(31, 93) = 93
Vậy BCNN(31, 93) = 93
b) Vì 120 ⁝ 24; 120 ⁝ 60 nên BCNN(24, 60, 120) = 120
Vậy BCNN(24, 60, 120) = 120.
Có ba bạn học sinh đi dã ngoại, sử dụng tin nhắn để thông báo cho bố mẹ nơi các bạn ấy đi thăm. Nếu như lúc 9 giờ sáng ba bạn cùng nhắn tin cho bố mẹ, hỏi lần tiếp theo ba bạn cùng nhắn tin lúc mấy giờ? Biết rằng cứ mỗi 45 phút Nam nhắn tin một lần, Hà 30 phút nhắn tin một lần và Mai 60 phút nhắn tin một lần.
Hướng dẫn:
Vì cứ mỗi 45 phút Nam nhắn tin một lần, Hà 30 phút nhắn tin một lần và Mai 60 phút nhắn tin một lần nên khoảng thời gian ngắn nhất để ba bạn cùng một lúc gửi tin nhất là BCNN (45, 30, 60)
Ta có: 45 = 32.5; 30 = 2. 3. 5; 60 = 22.3.5
BCNN(45, 30, 60) = 22.32.5= 180
Đổi 180 phút = 3 giờ
Do đó sau 3 giờ ba bạn sẽ cùng một lúc gửi tin nhắn cho bố mẹ.
Lần tiếp theo ba bạn cùng nhắn tin lúc:
9 + 3 = 12 (giờ)
Vậy lúc 12 giờ trưa thì ba bạn nhắn tin cùng một lúc.
Trong một buổi tập đồng diễn thể dục có khoảng 400 đến 500 người tham gia. Thầy tổng phụ trách cho xếp thành hàng 5, hàng 6 và hàng 8 thì đều thấy thừa một người. Hỏi có chính xác bao nhiêu người dự buổi tập đồng diễn thể dục.
Hướng dẫn:
Gọi số người trong buổi tập đồng diễn thể dục là x (người, x ∈ N*, 400 ≤ x ≤ 500)
Vì thầy tổng phụ trách xếp thành hàng 5 thì thừa 1 người nên x chia 5 dư 1 hay (x – 1) ⁝ 5
Vì thầy tổng phụ trách xếp thành hàng 6 thì thừa 1 người nên x chia 6 dư 1 hay (x – 1) ⁝ 6
Vì thầy tổng phụ trách xếp thành hàng 8 thì thừa 1 người nên x chia 8 dư 1 hay (x – 1) ⁝ 8
Do đó (x – 1) là bội chung của 5; 6 và 8.
Ta có: 5 = 5; 6 = 2. 3; 8 = 23
BCNN(5; 6; 8) = 23.3.5 = 120
(x – 1) B(120) = {0; 120; 240; 360; 480; 600;…}
Ta có bảng sau:
x – 1 | 0 | 120 | 240 | 360 | 480 | 600 |
x | 1 | 121 | 241 | 361 | 481 | 601 |
Mà buổi tập đồng diễn thể dục có khoảng 400 đến 500 người tham gia nên
Vì thế x = 481.
Vậy có chính xác 481 người dự buổi tập đồng diễn thể dục.
Tìm các số tự nhiên a và b (a < b), biết:
a) ƯCLN(a, b) = 15 và BCNN(a, b) = 180;
b) ƯCLN(a, b) = 11 và BCNN(a, b) = 484.
Hướng dẫn:
a) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 15. 180 = 2 700.
Vì ƯCLN(a, b) = 15 nên a ⁝ 15, b ⁝ 15, ta giả sử a = 15m, b = 15 n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 2 700
15m. 15n = 2 700
m. n. 225 = 2 700
m. n = 2 700: 225
m. n = 12 = 1. 12 = 2. 6 = 3. 4
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 12 nên ta có:
(m; n) ∈{(1; 12); (3; 4)}
+) Với (m; n) = (1; 12) thì a = 1. 15 = 15; b = 12. 15 = 180.
+) Với (m; n) = (3; 4) thì a = 3. 15 = 45; b = 4. 15 = 60.
Vậy các cặp (a; b) thỏa mãn là (15; 180); (45; 60).
b) Ta có: ab = ƯCLN(a, b). BCNN(a, b) = 11. 484 = 5 324.
Vì ƯCLN(a, b) = 11 nên , ta giả sử a = 11m, b = 11n. Do a < b nên m < n; m, n ∈ N* và ƯCLN(m, n) = 1.
Ta có: ab = 5 324
11m. 11n = 5 324
m. n. 121 = 5 324
m. n = 5 324: 121
m. n = 44 = 1. 44 = 4. 11
Vì m và n là hai số nguyên tố cùng nhau, m < n và có tích là 44 nên ta có:
(m; n) ∈{(1; 44); (4; 11)}
+) Với (m; n) = (1; 44) thì a = 1. 11 = 11; b = 44. 11 = 484.
+) Với (m; n) = (4; 11) thì a = 4. 11 = 44; b = 11. 11 = 121.
Vậy các cặp (a; b) thỏa mãn là (11; 484); (44; 121).
Quy đồng mẫu các phân số sau:
a) $\frac{5}{14}$ và $\frac{4}{21}$
b) $\frac{4}{5}$ ; $\frac{7}{12}$ và $\frac{8}{15}$
Hướng dẫn:
a) Ta có:
14 = 2. 7; 21 = 3. 7
BCNN(14, 21) = 2. 3. 7 = 42
Do đó ta có thể chọn mẫu chung của hai phân số là 42.
$\frac{5}{14}$=$\frac{5.3}{14.3}$=$\frac{15}{42}$; $\frac{4}{21}$ = $\frac{4.2}{21.2}$= $\frac{8}{42}$
b) Ta có: 5 = 5; 12 = 22.3; 15 = 3. 5
BCNN(5, 12, 15) = 22.3.5 = 60
Do đó ta có thể chọn mẫu chung của ba phân số là 60.
$\frac{4}{5}$=$\frac{4.12}{5.12}$=$\frac{48}{60}$ ; $\frac{7}{12}$=$\frac{7.5}{12.5}$=$\frac{35}{60}$ ;$\frac{8}{15}$=$\frac{8.4}{15.4}$=$\frac{32}{60}$
Máy tính xách tay (laptop) ra đời năm nào?
Laptop ra đời năm $\overline{abcd}$, biết $\overline{abcd}$ là số nhỏ nhất có bốn chữ số chia hết cho 25 và 79. Em hãy cho biết máy tính xách tay ra đời năm nào.
Hướng dẫn:
Vì số cần tìm là số nhỏ nhất có bốn chữ số chia hết cho 25 và 79 nên số cần tìm là bội chung nhỏ nhất có 4 chữ số của 25 và 79
Ta có: 25 = 52; 79 = 79
+) Không có thừa số nguyên tố chung và thừa số riêng là 5; 79.
+) Số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 79 là 1
Khi đó BCNN(25, 79) = 52.79 = 1 975.
Vậy máy tính ra đời năm 1 975.
Vua Lý Công Uẩn (Lý Thái Tổ) dời đô từ Hoa Lư về Đại La (nay là Hà Nội) năm $\overline{abcd}$ thuộc thế kỉ XI. Biết $\overline{abcd}$ là số có bốn chữ số chia hết cho cả 2; 5; 101. Em hãy cho biết vua Lý Thái Tổ đã dời đô vào năm nào.
Hướng dẫn:
Vì $\overline{abcd}$ là số có bốn chữ số chia hết cho cả 2; 5; 101 nên $\overline{abcd}$ là bội chung của 2; 5; 101.
Ta có: 2 = 2; 5 = 5; 101 = 101.
+) Không có thừa số nguyên tố chung và có thừa số riêng là 2; 5; 101.
+) Số mũ lớn nhất của 2 là 1, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 101 là 1
Khi đó BCNN(2, 5, 101) = 2. 5. 101 = 1 010.
Do đó $\overline{abcd}$ ∈ B(1 010) = {0; 1 010; 2 020; …}
Mà năm $\overline{abcd}$ thuộc thế kỉ XI nên $\overline{abcd}$ = 1 010.
Vậy vua Lý Thái Tổ đã dời đô vào năm 1 010.
Một bộ phận của máy có hai bánh xe răng cưa khớp nhau, bánh xe I có 20 răng cưa, bánh xe II có 15 răng cưa. Người ta đánh dấu “x” vào hai răng cưa đang khớp nhau (như hình dưới). Hỏi mỗi bánh xe phải quay ít nhất bao nhiêu răng để hai răng cưa đánh dấu ấy lại khớp với nhau ở vị trí giống lần trước? Khi đó mỗi bánh xe đã quay bao nhiêu vòng?
Hướng dẫn:
Có bánh xe I có 20 răng cưa, bánh xe II có 15 răng cưa.
Số răng cưa mà mỗi bánh xe phải quay ít nhất để hai răng cưa đánh dấu ấy lại khớp với nhau ở vị trí giống lần trước là BCNN(20, 15)
Ta có: 20 = 22.5; 15 = 3.5
BCNN(20, 15) = 22.3.5 = 60
Do đó mỗi bánh xe phải quay ít nhất 60 răng cưa để hai răng cưa đánh dấu ấy lại khớp với nhau ở vị trí giống lần trước
Khi đó, bánh xe I phải quay số vòng là:
60: 20 = 3 (vòng)
Bánh xe II phải quay số vòng là:
60: 15 = 4 (vòng)
Vậy mỗi bánh xe phải quay ít nhất 60 răng cưa để hai răng cưa đánh dấu ấy lại khớp với nhau ở vị trí giống lần trước và bánh xe I phải quay 3 vòng; bánh xe II phải quay 4 vòng.