Chương 1:Tập hợp các số tự nhiên
Chương 2: Tính chia hết trong tập hợp các số tự nhiên
Chương 3: Số nguyên
Chương 4: Một số hình phẳng trong thực tiễn
Chương 5: Tính đối xứng của hình phẳng trong tự nhiên

Bài tập toán lớp 6 Bài 6: Lũy thừa với số mũ tự nhiên

Bài tập toán lớp 6 Bài 6: Lũy thừa với số mũ tự nhiên

Giải bài tài tập Toán lớp 6 bài 6 có đáp án chi tiết cho từng bài tập trong sách bài tập Kết nối tri thức mới. Mời các em học sinh cùng quý phụ huynh tham khảo.

Bài tập toán lớp 6 bài 6 trang 22

Bài 1.51 trang 22 sách Bài tập toán lớp 6 Tập 1

Viết gọn các tích sau bằng cách dùng lũy thừa:

a) 2. 2. 2. 2. 2;

b) 2. 3. 6. 6. 6;

c) 4. 4. 5. 5. 5.

Hướng dẫn:

a) 2. 2. 2. 2. 2 = 25

b) 2. 3. 6. 6. 6 = 6. 6. 6. 6 = 64

c) 4. 4. 5. 5. 5 = (4. 4). (5. 5. 5) = 42. 53

Bài 1.52 trang 22 sách Bài tập toán lớp 6 Tập 1

a) Lập bảng giá trị của 2n với n ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10};

b) Viết dưới dạng lũy thừa của 2 các số sau: 8; 256; 1 024; 2 048.

Hướng dẫn:

a)

+) Với n = 0 thì 2n = 20 = 1             (theo quy ước)

+) Với n = 1 thì 2n = 21 = 2

+) Với n = 2 thì 2n = 22 = 2.2 =  4

+) Với n = 3 thì 2n = 23= 2.2.2 = 8

+) Với n = 4 thì 2n = 24 = 2.2.2.2 = 16

+) Với n = 5 thì 2n = 25 = 2.2.2.2.2 = 32

+) Với n = 6 thì 2n = 26 = 2.2.2.2.2.2 = 64

+) Với n = 7 thì 2n = 27 = 2.2.2.2.2.2.2 = 128

+) Với n = 8 thì 2n = 28 = 2.2.2.2.2.2.2.2 = 256

+) Với n = 9 thì 2n = 29 = 2.2.2.2.2.2.2.2.2 = 512

+) Với n = 10 thì 2n = 210 = 2.2.2.2.2.2.2.2.2.2 = 1024

Ta có bảng sau:

n012345678910
2n12481632641282565121 024

b) Từ bảng trên ta thấy:

+) 8 = 23;      256 = 28 ;            1 024 = 210;

+) 2 048 = 2. 1 024 = 21.210 = 21+10 = 211

Bài tập toán lớp 6 bài 6 trang 23

Bài 1.53 trang 23 sách Bài tập toán lớp 6 Tập 1

a) Viết các bình phương của hai mươi số tự nhiên đầu tiên thành một dãy theo thứ tự từ nhỏ đến lớn;

b) Viết các số sau thành bình phương của một số tự nhiên: 64; 100; 121; 169; 196; 289.

Hướng dẫn:

a)

1) Với a = 0 thì a2 = 02 = 0.0 = 0

2) Với a = 1 thì a2 = 12 = 1.1 = 1

3) Với a = 2 thì a2 = 22 = 2.2 = 4

4) Với a = 3 thì a2 = 32 = 3.3 = 9

5) Với a = 4 thì a2 = 42 = 4.4 = 16

6) Với a = 5 thì a2 = 52 = 5.5= 25

7) Với a = 6 thì a2 = 62 = 6.6 = 36

8) Với a = 7 thì a2 = 72 = 7.7 = 49

9) Với a = 8 thì a2 = 82 = 8.8 = 64

10) Với a = 9 thì a2 = 92 = 9.9 = 81

11) Với a = 10 thì a2 = 102 = 10.10 = 100

12) Với a = 11 thì a2 = 112 = 11.11 = 121

13) Với a = 12 thì a2 = 122 = 12.12 = 144

14) Với a = 13 thì a2 = 132 = 13.13 = 169

15) Với a = 14 thì a2 = 142 = 14.14 = 196

16) Với a = 15 thì a2 = 152 = 15.15 = 225

17) Với a = 16 thì a2 = 162 = 16.16 =  256

18) Với a = 17 thì a2 = 172 = 17.17 = 289

19) Với a = 18 thì a2 = 182 = 18.18 = 324

20) Với a = 19 thì a2 = 192 = 19.19 = 361

Vậy các bình phương của hai mươi số tự nhiên đầu tiên thành một dãy theo thứ tự từ nhỏ đến lớn là: 0; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100; 121; 144; 169; 196; 225; 256; 289; 324; 361.

b)

+) 64 = 8. 8 = 82

+) 100 = 10. 10 = 102

+) 121 = 11. 11 = 112

+) 196 = 14. 14 = 142

+) 289 = 17. 17 = 172

Bài 1.54 trang 23 sách Bài tập toán lớp 6 Tập 1

a) Tính nhẩm 10n với n ∈ {0; 1; 2; 3; 4; 5}. Phát biểu quy tắc tổng quát tính lũy thừa của 10 với số mũ đã cho;

b) Viết dưới dạng lũy thừa của 10 các số sau: 10; 10 000; 100 000; 10 000 000; 1 tỉ.

Hướng dẫn:

a) Ta có:

Tính nhẩm 10^n với n ∈ {0; 1; 2; 3; 4; 5}. Phát biểu quy tắc tổng quát tính

b) 10 = 101; 10 000 = 104; 100 000 = 105; 10 000 000 = 107; 1 tỉ = 1 000 000 000 = 109.

Bài 1.55 trang 23 sách Bài tập toán lớp 6 Tập 1

Tính:

a) 25

b) 52

c) 24. 32.7

Hướng dẫn:

a) 25= 2.2.2.2.2 = 4.2.2.2 = 8.2.2 = 16.2 = 32

b) 52 = 5. 5 = 25

c) 24. 32.7 = (2. 2. 2. 2). (3.3).7 = (4. 2. 2). 9. 7 = 8. 2. 9. 7 = 16. 9. 7 = 144. 7 = 1 008.

Bài 1.56 trang 23 sách Bài tập toán lớp 6 Tập 1

Tìm n, biết:

a) 54= n

b) n3 = 125

c) 11n = 1331;

Hướng dẫn:

a) 5= n;

Hay n = 5= 5. 5. 5. 5 = 25. 5. 5 = 125. 5 = 625

Vậy n = 625.

b) n3 = 125;

n3 = 5.5.5

n3 = 53

n = 5

Vậy n = 5.

c) 11n = 1331

11n = 11.11.11

11n = 113

Vậy n = 3.

Bài 1.57 trang 23 sách Bài tập toán lớp 6 Tập 1

Viết kết quả các phép tính sau dưới dạng một lũy thừa:

a) 3.34.35

b) 73:72:7

c) (x4)3.

Hướng dẫn:

a) 3.3435= 31.34.35=31+4+5=310

b) 73:72:7=73-2-1=70=1

c)(x4)3=x4.x4.x4=x4+4+4=x12

Bài 1.58 trang 23 sách Bài tập toán lớp 6 Tập 1

Kết luận sau đúng hay sai?

Không có số chính phương nào có chữ số hàng đơn vị là 2.

Hướng dẫn:

Các số tự nhiên có chữ số tận cùng là 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 khi bình phương sẽ có chữ số tận cùng lần lượt là 0; 1; 4; 9; 6; 5; 6; 9; 4; 1. Do đó số chính phương bất kì sẽ có chữ số tận cùng là 0; 1; 4; 5; 6; 9.

Vì vậy kết luận không có số chính phương nào có chữ số hàng đơn vị là 2 là đúng.

Bài 1.59 trang 23 sách Bài tập toán lớp 6 Tập 1

Tìm chữ số tận cùng của số 475 và chứng tỏ số 475 + 20216 không phải là số chính phương.

Hướng dẫn:

+) Ta thấy: 472 = 47 . 47 = 47 . (40 + 7) = 47 . 40 + 47. 7 = 47. 40 + (40 + 7) . 7

= 47 . 40 + 40 . 7 + 7 . 7 = 47 . 40 + 40 . 7 + 49

Vì 47 . 40 có chữ số tận cùng là 0; 40 . 7 có chữ số tận cùng là 0; 49 có chữ số tận cùng là 9 nên 472 có chữ số tận cùng của là 0 + 0 + 9 = 9.

Tương tự (472)2 có chữ số tận cùng như chữ số tận cùng của 92 = 81 nên chữ số tận cùng của (472)2 là 1.

Do đó: 475 = 472 + 2 + 1 = 472 . 472 . 47 = (472)2 . 47 có chữ số tận cùng của là 1 . 7 = 7.

Vì vậy chữ số tận cùng của số 475 là 7.

+) Ta có 2 021 có chữ số tận cùng là 1 nên

2 0216 = 2 021 . 2 021 . 2 021 . 2 021 . 2 021 . 2 021 có chữ số tận cùng của 1 . 1 . 1 . 1 . 1 . 1 là 1.

Vì vậy chữ số tận cùng của số 2 0216 là 1.

Như vậy 475 + 2 0216 có chữ số tận cùng là 7 + 1 = 8.

Mà các số tự nhiên thì có chữ số tận cùng là 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 khi bình phương sẽ có chữ số tận cùng lần lượt là 0; 1; 4; 9; 6; 5; 6; 9; 4; 1. Do đó số chính phương bất kì sẽ có chữ số tận cùng là 0; 1; 4; 5; 6; 9.

Vậy 475 + 2 0216 có chữ số tận cùng là 8 thì không phải là số chính phương.

Bài 1.60 trang 23 sách Bài tập toán lớp 6 Tập 1

Không tính các lũy thừa, hãy so sánh:

a) 2711 và 818

b) 6255 và 1257

c) 536 và 1124

Hướng dẫn:

bài tập toán lớp 6 bài 6

bài tập toán lớp 6 bài 6

Bài 1.61 trang 23 sách Bài tập toán lớp 6 Tập 1

Giải thích tại sao ba số sau đều là số chính phương:

a) A = 11 – 2

b) B = 1 111 – 22

c) C = 111 111 – 222

Hướng dẫn:

a) A = 11 – 2 = 9 = 3. 3 = 32

Do đó A là số chính phương.

b) B = 1 111 – 22

= (1 100 + 11) – (11 + 11)

= 1 100 – 11

= 11. 100 – 11. 1

= 11. (100 – 1)

= 11. 99

= 11. (9. 11)

= (11. 11). 9

= (11. 11). (3. 3)

= (11.3). (11. 3)

= 33. 33

= 332

Do đó B là số chính phương.

c) C = 111 111 – 222

= (111 000 + 111) – (111 + 111)

= 111 000 – 111

= 111. 1 000 – 111. 1

= 111. (1 000 – 1)

= 111. 999

= 111. (111. 9)

= (111. 111). 9

= (111. 111). (3. 3)

= (111. 3). (111. 3)

= 333. 333

= 3332

Do đó C là số chính phương.

Vậy cả ba số A, B, C đều là số chính phương.